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Abstract-A mathematical formulation for the mechanical response of concrete and similar
cemented aggregate mixtures is presented. The stable response, associated with the growth of
microcracks, is described by a phenomenological plasticity framework. The transition to unstable
response, invoking localized deformation, is considered as a bifurcation problem. In the localized
mode, the mechanical behaviour is modelled by estimating, through a homogenization technique,
the average mechanical properties of a medium intercepted by a macrocrack. The strain-softening
behaviour is the result of unstable response along the interface, triggered by a progressive degra­
dation of surface asperities. The mathematical framework is illustrated by some numerical examples.
The strain localization criterion, derived from considerations of stability of the constitutive relation
governing the homogeneous deformation mode, is applied to determine the bifurcation point and
the orientation of the macrocrack in a series of plane strain tests. The simulations of unstable
response are also provided, illustrating the effect of the size of the sample on average mechanical
characteristics. The formulation is incorporated in a finite element code to investigate the progressive
failure of concrete blocks subjected to uniaxial compression.

INTRODUCTION

The behaviour of plastic-fracturing materials, like cemented aggregate mixtures, has been
the object of intensive research over the last few decades. An extensive survey, focusing on
constitutive relations, fracture, creep, heat and moisture transfer, can be found in Bazant
(1989). The paper, which provides nearly 100 references, identifies the principal advances
in all these areas since the early 1970s. Despite many significant contributions, the descrip­
tion of the mechanical response of cemented aggregate mixtures still poses a formidable
challenge. In such materials, the deformation process consists initially of nucleation and
growth of microcracks. For certain stress paths, however, the subsequent damage may
become localized along discrete failure planes (macrocracks). Formation of such a mech­
anism is usually associated with an unstable material response. The objective of this paper
is to outline a simple methodology for describing both stages of the deformation process
and to implement the proposed approach in the context of a boundary-value problem.

The work described here is an extension of research reported earlier by Pietruszczak
et al. (1988). In that reference, a constitutive model for concrete, built within the framework
of rate-independent theory of plasticity, has been presented. Although the material descrip­
tion includes the unstable (strain-softening) response, the formulation of the problem is
not rigorous. First, the inception of strain-softening, corresponding to formation of a
macrocrack, is governed by a path-independent criterion which is imposed a priori. More­
over, the mathematical formulation incorporates some empirically-based functions cor­
relating the rate of strain-softening with geometrical aspects. In this paper a more rigorous
approach is pursued. The ductile-brittle transition is considered as a bifurcation problem,
i.e. loss of stability of the constitutive equation governing the homogeneous deformation.
The strain-softening behaviour is attributed to a non-homogeneous mode resulting from
macroscopic fracturing and subsequent sliding along asperities. The response in an unstable
regime is defined by estimating the average mechanical properties of a heterogeneous
medium consisting of an interface (i.e. macrocrack) and the adjacent intact material.

In the next section, a constitutive model for the description of distributed damage,
associated with a stable response, is briefly outlined. The formulation is then applied to
investigate the inception of strain localization, i.e. formation of a macrocrack. Numerical
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examples include the simulation of a series of plane strain uniaxial compression tests
performed at different initial confining pressures. In particular, the sensitivity of the ductile­
brittle transition and that of the orientation of the macrocrack to the initial test conditions
are investigated. The predicted qualitative trends are consistent with the existing exper­
imental data (Palaniswamy and Shah, 1974). In the subsequent sections, the homo­
genization technique for dealing with localized deformation mode is first reviewed [after
Pietruszczak and Niu (1993)], followed by a presentation of a constitutive model for the
interface. The formulation is later applied to study the average response of non-homo­
geneous samples in an unstable regime. Finally, the proposed approach is implemented in
the context of a boundary-value problem. In particular, the finite element analysis of the
progressive failure of concrete blocks loaded in compression is performed.

DESCRIPTION OF STABLE RESPONSE OF CONCRETE

The constitutive model employed in this study is based on the phenomenological
plasticity framework proposed by Pietruszczak et al. (1988). The formulation invokes the
concept of a failure locus which is introduced a priori as a path-independent criterion. The
deformation process is described in terms of evolution of the family of yield surfaces
!((5ij,~) = 0, where ~ is a suitably chosen damage parameter. The direction of plastic flow
is determined from a non-associated flow rule, which involves the existence of a family of
plastic potential surfaces defined in a parametric form, '1'((5;) = const. The formulation
outlined here is restricted to a stable (strain-hardening) deformation mode only. The
transition to unstable behaviour is considered later within the context of bifurcation
analysis.

The failure locus is chosen in the form

where

F= rJ-g(8)rJc = 0 (1)

(2)

In the above equations 1= -(5;i> (j = (1/2 SijS;)l!2, 8 = 1/3 sin- l (3j3J3 /2rJ 3
) and

J3 = 1/3 SijSjkSki are the stress invariants. Moreover, the parameters aj, a2 and U3 represent
dimensionless material constants and.f~ denotes the uniaxial compressive strength of
concrete. It should be noted that in the principal stress space, eqn (1) describes an irregular
cone with smooth curved meridians and a non-circular convex cross-section, defined by
9 (8). The functional form of 9 (8) is assumed to be affected by the value of confining
pressure. A number of possible representations for this function have been provided by
Jiang and Pietruszczak (1988).

The yield surface is chosen in a functional form similar to that of eqn (I), i.e.

! = rJ - f3( ~)g (8)rJc = 0, (3)

where f3(~) represents a hardening function. The internal variable ~ is related to the history
of accumulated plastic distortions,

(4)

where de~ represents the deviatoric part of the plastic strain rate and <D = const. is defined
through an appropriate parametric equation <D = <D(I, 8) [see Pietruszczak et al. (1988)].

The direction of plastic flow is governed by a non-associated flow rule and the cor­
responding plastic potential is selected in the form
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(5)

In eqn (5), me represents the value of m = e/(g (8)l) for which dB); = 0 (i.e. a transition
from compaction to dilatancy takes place), whereas [ = Gofc +/ and Go defines the location
of the apex of the current potential surface in the tensile domain.

Finally, the hardening function may be chosen in a simple hyperbolic form:

f3 = ~/(A + ~), (6)

where A is a material constant. According to eqn (6), for ~ ---> CfJ there is f3(~) ---> 1, which
implies that the yield surface asymptotically approaches the failure surface.

TRANSITION TO BRITTLE RESPONSE AS A BIFURCATION PROBLEM

The growth of microcracks is a fairly distributed process which is associated with a
stable material response. For certain stress trajectories, however, a different deformation
mode may prevail, consisting of formation of discrete failure planes (macrocracks). In the
latter case, the mechanical response as observed on the macroscale becomes, in general,
unstable. The inception of a localized mode may be considered as a bifurcation problem,
i.e. loss of stability of the constitutive relation governing the homogeneous deformation.
The conditions under which localized modes arise have been investigated by a number of
researchers. Preference has been given to study the shear band formation in ductile materials
like metals or soils (Rudnicki and Rice, 1975) and only limited research has been conducted
in the context of brittle materials (Ortiz, 1987). Some of the basic principles underlying the
theory follow from early studies on elastic stability, later extended to inelastic materials
(Hill, 1958; Thomas, 1961). A detailed review of the subject can be found, for example, in
Bardet (1990).

Consider a homogeneous sample, under a uniform stress field (Jij' subjected to a quasi­
static strain rate tij' The deformation field within the sample will, in general, remain uniform;
in some cases, however, a bifurcation may occur in such a manner that the subsequent
deformation becomes discontinuous across a plane of orientation ni• For a small defor­
mation theory, the condition for the inception of strain localization takes the form (Rud­
nicki and Rice, 1975)

(7)

where D iikl is the constitutive tensor governing the homogeneous deformation mode. In
numerical terms, the problem reduces to a constrained minimization problem for
fen;) = det Bjk under n,ni = I, where ni can be expressed in terms of two spherical angles
defining the orientation of the shear band.

The above approach has been applied to study the onset of localization using the
constitutive model summarized in the previous section. In particular, a series of plane strain
uniaxial compression tests have been simulated assuming the following set of material
parameters:

E = 35,000 MPa, v = 0.20, fc = 50 MPa, It = 5 MPa, A = 0.000085.

The main objective was to investigate the sensitivity of the inception of localized damage
to the value of the initial confining pressure /0' The constitutive relation for concrete has
been integrated using the forward-Euler explicit algorithm and imposing mixed boundary
conditions, i.e. t 22 < 0 (t d = 0, i = 1,2,3) under 0- 11 = O. At each integration step the consti­
tutive matrix D Ukl was computed and the localization condition (7) checked.
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Fig. 1. Numerical simulations of a ductile-brittle transition in plane strain uniaxial compression.

The results are presented in Fig. I, which shows the deviatoric characteristics cor­
responding to confining pressures ranging from 0 to 150 MPa. At the same time, Table I
gives the numerical details pertaining to the detection of the bifurcation point and the
orientation of the failure plane. At low initial confining pressures, 0 < /0 < 25 MPa, the
transition to localized mode takes place at axial strain intensities within the range of 0.5%.
As the confining pressure increases, the stable mode associated with formation and growth
of microcracks becomes predominant. At high pressures, /0 > 100 MPa, the discrete failure
planes can only form at strain levels which are practically not attainable in the context of
typical boundary value problems, implying that the failure mode involves primarily the
distributed damage (Fig. 1b). The initial conditions also affect the orientation of the failure
plane. In particular, the inclination of this plane with respect to the major principal stress
progressively decreases with increasing confining pressure.
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Table I. Results of bifurcation analysis for plane strain uniaxial compression tests
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Initial confining
pressure 10 (MPa)

Inclination of
shear band (fJ)

Bifurcation point
-£n (%) (T1I-(T22 (MPa)

o
5

25
50

100
150

56.2
54.2
50.0
48.0
46.5
45.5

0.18
0.26
0.65
1.16
2.74
4.54

49.38
63.63

108.71
142.61
207.21
263.10

DESCRIPTION OF LOCALIZED DAMAGE

In a large class of boundary value problems the loss of stability of a structure occurs
soon after the initiation of localized damage. The propagation of this damaged zone, which
in itself leads to formation of a distinct failure mechanism, requires very little mechanical
effort, so that the ultimate load differs only marginally from that corresponding to the
onset oflocalization. In this case, the bifurcation analysis alone may be sufficient to estimate
the critical intensity of external load. In some structural problems, however, the loss of
stability is associated with a "diffused" mode of failure involving formation of local shear
bands (macrocracks), which eventually collapse into a discrete set of failure planes triggering
the overall loss of stability of the structure. In the latter case, the ultimate load is significantly
affected by characteristics in the post-localized stage, which are usually associated with
unstable material behaviour. Therefore, an appropriate description of these characteristics
is essential for a reliable solution of the above mentioned class of problems.

It is well known that standard rate-independent continuum theories cannot adequately
model the localized damage. In a typical formulation, the measured force-displacement
response is simply converted to a stress-strain relation, ignoring the inhomogeneous nature
of the deformation process. As a result, the material parameters cannot be uniquely deter­
mined since the experimental response depends explicitly on the geometry of the specimen.
In mathematical terms, the elliptic character of the set of governing differential equations
is lost and the numerical analysis suffers from spurious mesh sensitivity.

In order to overcome these deficiencies the classical continuum formulations have been
enriched by incorporating additional terms which signify the evolution of microstructure
associated with the localized damage. In the last decade several conceptually different
approaches for modelling of localized deformation have emerged, including the use of
micro-polar continua (Muhlhaus and Vardoulakis, 1987; de Borst, 1991, 1993), non-local
theories (Pijaudier-Cabot and Bazant, 1987), gradient-dependent formulations (Aifantis,
1984; Muhlhaus and Aifantis, 1991; de Borst and Muhlhaus, 1992), etc. In a Cosserat
continuum the generalized stress-strain components include couple-stresses and micro­
curvatures. The formulation incorporates an internal length scale, rendering the numerical
solutions to be virtually independent of the details of discretization. A significant advantage
of this formulation, as compared to other non-standard approaches, is that the framework
can be implemented in finite element algorithms using standard plasticity procedures for
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deriving the tangent operators. A distinct drawback is the fact that the rotational degrees
of freedom cannot be activated in pure tension. Consequently, for problems in which
mode I failure is the predominant mechanism, the analysis may still suffer from deficiencies
pertinent to classical models. In gradient theories, which may be considered as a sub-set of
non-local theories, the functional form of the yield surface incorporates higher order
gradients of inelastic strain. While non-local models require special numerical strategies,
the gradient formulations are computationally more efficient (de Borst and Muhlhaus,
1992). Both these formulations, however, invoke non-standard boundary conditions. The
presence of an internal length scale, once again, ensures that the solutions are not affected
by the discretization and thus remain objective in the numerical sense. One of the major
problems when dealing with higher-order continua (as well as Cosserat media) is the
question of identification of material parameters. In general, the parameters cannot be
measured or derived from elementary material tests, which is largely due to the phenom­
enological structure of these formulations. The only alternative seems to be the fitting of
experimental results by means of numerical analyses. This, however, is not only inefficient
but also quite ambiguous, particularly in the case when a number of material parameters
is involved. A similar problem arises in the context of a viscoplastic regularization, whereby
it is difficult to differentiate between the effects of rate sensitivity of the material itself and
the influence of the inertia forces in the context of a coupled dynamic analysis.

The approach followed here is based on estimating, through a simple homogenization
technique, the average mechanical properties in the domain adjacent to the region under­
going localized damage. Such a description has been originally proposed within the context
of soil mechanics (Pietruszczak and Mroz, 1981) and later modified and implemented in
the finite element analysis of some geotechnical problems (Pietruszczak and Niu, 1993).
The formulation may be considered as an alternative non-standard continuum approach.
It incorporates an additional parameter, which has the dimension oflength and is identified
with the ratio of the area of the homogenized domain to the length of the localized zone
penetrating this domain (in a two-dimensional context). The thickness of the localized
zone, which is a multiple of the mean aggregate size, has no direct effect on the global
response. There is an explicit distinction between the mechanical properties in the intact
and localized region (not present in other continuum formulations). Consequently, the
averaged response is a function of the properties of both constituent materials, the latter
identifiable form elementary material tests, as pointed out later in this paper. From a
numerical viewpoint, no special techniques are required for implementation in a finite
element algorithm and no direct restrictions are placed on the discretization scheme (Pie­
truszczak and Niu, 1993). The main disadvantage is the simplicity of the homogenization
procedure itself, which is based on rather restrictive assumptions. There is also an element
of ambiguity in estimating the characteristic length parameter in the context of a finite
element discretization (the precise location of the shear band is unknown). Such an ambi­
guity, however, is even more pronounced in the context of the definition (and estimates) of
the internal length scale introduced in other non-standard continuum formulations. In
what follows, the main aspects of the averaging procedure are briefly summarized and the
formulation is subsequently applied to study the phenomenon of localized damage in
concrete.

Consider a volume of the material adjacent to a narrow shear band (interface) which
intercepts this region. Let iTU), j;U) (i = 1, 2) denote the average stress-strain rates in the
constituents involved, i.e. the intact material and the medium confined to the shear band.
Both of these tensorial fields are considered to be homogeneous within themselves. If the
constituents are perfectly bonded then the integration over the volume of an representative
element yields (Hill, 1963)

(8)

where iT is the applied stress rate, j; is resulting average macroscopic deformation of the
composite body and /li (i = 1,2) are the respective volume fractions. It should be emphasized
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that (J'(I) and 8(1) refer to the macroscopic stress and deformation of the constituents and are
not intended as measures of the deformation process at the microscopic level. For the
discussion that follows, eqns (8) are supplemented by a set of kinematic and static con­
straints:

(9)

where k and s are scalar-valued functions and) specifies the number of constraints. Equa­
tions (8) and (9), together with the corresponding constitutive relations, form a set of
differential equations which is complete, i.e. the response of the composite is uniquely
defined in terms of properties of constituents and respective volume fractions. It should be
noted that constraints (9), which are frequently used to estimate the properties of fibre­
reinforced (Dvorak and Bahei-EI-Din, 1982) and layered composites (Sawicki, 1983), are
restrictive. Rigorous formulation requires, in general, that the kinematic compatibility and
static constraints be specified in terms of velocities and traction along the interface between
the constituents. This is a rather strong assumption which has to be eventually relaxed in
order to render a feasible solution.

Within the context ofan inhomogeneity in the form ofa narrow shear band, constraints
(9) can be expressed in the form

• _ .(1) _ ·(2).
(J22 - (J22 - (J22 , (10)

Here the coordinate system has been chosen in such a way that the x2-axis is along the
normal to the shear band and I; is defined as I; = {611 ,822' 633, Y12' Yn, Y23V. The thickness of
the shear band (say, 10 times the mean aggregate size) may be considered as negligible
compared to other physical dimensions involved. Thus, it can formally be eliminated from
macroscopic considerations by expressing the local deformation field in terms of velocity
discontinuities g rather than strain rates 1;(2). Denoting gas g = {9b91,93V, where 92 is the
normal component and 91 and 93 the tangential components of the velocity discontinuity,
the strain decomposition in eqn (8) reduces to

[6]1; = [<>]I;(l)+j.tg, (II)

where

[0] ~ [~
1 0 0 0

n0 0 1 0

0 0 0 0

In eqn (11), j.t defines the ratio of the cross-sectional area of the failure plane to the volume
of the representative element. Thus, j.t -I has the dimension of length and may be considered
as a characteristic length parameter. Writing now the constitutive relations, for both
constituents involved, in the form

(12)

it is apparent that the problem is mathematically determinate. Indeed, the stress decompo­
sition in eqn (8), together with eqns (10)-(12), provide the set of 27 equations for 27
unknowns. The solution can be expressed as

(13)

where the components of [Stl and [S2] are function of the parameter j.t and properties of
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the materials involved. An explicit definition of both of these matrices is provided in
Pietruszczak and Niu (1993).

The implementation of the above framework requires the description of mechanical
characteristics of the material confined to the shear band. Ideally, such characteristics
should be derived from micromechanical considerations, taking into account a progressive
evolution of the geometry of the microstructure. As an illustration, a simple constitutive
model, based on the physical framework proposed by Dowding et al. (1991), is presented
in the next section. It should be pointed out that the material parameters associated with
constitutive relations (12), and thus (13), are identifiable from elementary material tests.
An extended discussion on identification of properties of the intact material is provided in
Pietruszczak et al. (1988). The material characteristics of the interface can also be measured
experimentally. Perhaps the most appropriate procedure is to fail initially homogeneous
samples in mode 1 and subsequently identify the interface properties from a series of direct
shear tests performed at different normal stress intensities.

CONSTITUTIVE MODEL FOR THE INTERFACE

Assume that the deformation in the neighbourhood of the interface results from
sliding along a set of asperities, with a pre-defined orientation, coupled with a progressive
degradation of these asperities. The sliding process is described by invoking the classical
elastic-perfectly plastic formulation, whereas the degradation phenomenon, attributed
to accumulated discontinuities in tangential components of velocity, reduces asperities'
inclination and results in an unstable strain-softening response.

In general, the interface surface may be very irregular so that a significant bias in the
spatial distribution of asperities orientation occurs. Such a bias can be described by employ­
ing the mathematical representation analogous to that in Pietruszczak and Krucinski
(1989), i.e. defining the "directional" distribution of asperities orientation as an average,
continuous measure expressed in terms of an expansion based on symmetric traceless
tensors. In this section, a very simple conceptual framework, similar to that of Dowding et
al. (1991), will be discussed based on a rather drastic geometric idealization. Firstly, the
formulation will be restricted to a two-dimensional case, in which out-of-plane motion is
not accounted for. Secondly, the interface surface will be idealized as consisting of a set of
sawtooth asperities with a uniform (in an average sense) inclination IX with respect to the
direction of the interface. Since the orientation is said to be uniform and the sliding process
is governed by the ratio of normal and tangential components of the resultant force acting
along each asperity, the formulation becomes invariant with respect to the number of active
asperities and the actual contact areas between them. Thus, the problem can be reduced to
considering the deformation resulting from sliding along a single "representative" asperity.
Note that the orientation of this asperity, defined by IX, may in general be different for
sliding in two opposite directions.

Given the above assumptions, consider now the deformation process in the neigh­
bourhood of the idealized interface. Introduce a local frame of reference x, such that the
x2-axis is along the normal to the asperity. IfF = {F2,Fj }T is the resultant force acting at
the interface, then

[

COS IX
F = [T]F; [T) = .

-smlX
sin IX] ,

cos IX
(14)

where F = {F2,F1Vis the force transmitted through the asperity of orientation IX. A similar
transformation law applies to the displacement discontinuity vector g = {g2,gIV, The
sliding along the asperity is described in terms of an elastic-perfectly plastic formulation,
in which the yield and plastic potential functions are selected as
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f(F) = IF\ I+rrF2 = 0; Q = IF\ I = const,

with 11 = const. The consistency condition reads

1525

(15)

(16)

Assume now that the flow rule and the evolution law for the asperity orientation take the
form

(17)

Since, according to eqn (17), the degradation of asperities is affected only by irreversible
deformations, the response in the elastic range can be defined as

(18)

where kN and kT represent the normal and shear stiffnesses, respectively.
Substituting eqns (18) and (17) in the consistency condition (16) and noting that

one obtains, after some transformations

. (Of)T T e.
), = of [T] [k ]g/H,

where

_ . _ (Of)T T e oQ
H - HI +H 2 , HI - of [T] [k ][T] of

(19)

(20)

It should be noted that since Ort./09~ < 0 => H 2 < 0, which leads to a locally unstable material
response. Following now a standard plasticity procedure, i.e. substituting eqns (17), (19)
and (20) into eqn (18) and rearranging, one obtains

[k
e

] ([T] ~i + :rt. [T]gP ;: SIG (FI )) (:ir[T]T[k
e

]

F = [k]g; [k] = [ke] _ 91 (22)
H

where [k] is the elastoplastic stiffness (det[k] < 0) whose components are defined, in explicit
terms, as
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kNk, _. ( ca)k ic = ----(-llsinaSlG(Fi)+cosa) sina+g)~ ;
H cg)

(23)

Finally, the degradation law for the orientation of asperities (17) may be assumed in a
simple exponential form

a = ao exp ( - C g)), (24)

where au is the initial orientation and C represents a material constant.
The constitutive law, presented above, relates the material rates of the resultant force

acting at the interface to that of the displacement discontinuity. It is quite apparent that,
given the unit cross-sectional area of the interface, eqn (22) can be expressed in the
functional form consistent with eqn (12), thereby completing the mathematical formulation
of the problem.

In order to provide an illustration, the above described constitutive framework has
been applied to simulate the results of a series of direct shear tests as reported by Schneider
(1976). The tests have been conducted on hard-formed gypsum samples displaying natural
joint morphology typical of a tension joint in granite. Based on the experimental data, the
following material parameters have been selected:

I] = 0.82: K, = 40,000 MN m- 3; K N = 50,000 MN m- 3
,

where KT and K N represent the elastic stiffnesses (in the tangential and normal directions,
respectively) defined according to representation (12). The average inclination of the asperit­
ies was estimated [based on surface profiles provided in Schneider (1976)] as a = 9°,
whereas C = 25 m-' was chosen to obtain the best fit approximation to the experimental
characteristics.

The results of numerical simulations are presented in Fig. 2. Figure 2a shows the shear
stress-deformation curves corresponding to two different values of normal stress, whereas
Fig. 2b gives the respective dilatancy profiles. The predictions appear to be in reasonable
agreement with the experimental data, particularly in the context of load-deformation
characteristics. It is interesting to note that, in the present formulation, the dilation reduces
progressively to zero as the asperities degrade. On the other hand, if the convective term in
the expression for the velocity discontinuity (19) is dropped, which is equivalent to referring
the flow rule to the global frame of reference x, then the dilation approaches a constant
value. This is shown in Fig. 3, which provides the respective volumetric characteristics. For
both the cases, the shear characteristics (shown in Fig. 2a) remain identical.

NCMER1CAL EXAMPLE

The complete mathematical formulation has now been applied to extend the pre­
dictions of plane strain uniaxial compression tests (Fig. I) to the post-localized regime. The
simulations have been carried out assuming the following set of interface parameters:



Brittle response of concrete

20

(a)

1527

1.0

000

o o(}--h-rTTlCTTTTTTTl HT I I " , i ' I I rn , , I , I' I I I , I , i , I ITT1TITTTTTj
1000 20'.00 30.00 40.00 50.00

gl (nm)

(b)

50

4.0

30

20

1.0

...

...

n'TTTfTITTT' " I I' I I ,nTI, 1" '" ITI 11
000 10.00 20.00 30.00 40.00 50.00

0"22=0.65 MPa ;

0"22=1.38 MPa;

• Experimental (Schneider, 1976) , _0-0-0- Numerical

.... Experimental (Schneider, 1976), -,-,-.- Numerical

Fig. 2. Response of hard-formed gypsum joints subjected to direct shear.

KT = 40,000 MN 01- 3 ; KN = 50,000 MN 01-
1

; 'X = 10'; C = 20001- I.

The above choice is rather arbitrary as no adequate experimental data are available. Thus,
the objective here is to investigate the qualitative trends of the response as predicted by the
present formulation. It should be noted that the constant 1], eqn (15), is not explicitly
required here since its value is determined from the bifurcation analysis.

The use of the homogenization technique, eqn (13), implies that the macroscopic
response of the sample is sensitive to the parameter f.1., defined in eqn (11). In the context
of plane strain configuration, II assumes the value Ii = (hcos {3) - I, where h is the height of
the sample and {3 defines the orientation of the interface. Thus, even though the macroscopic
response is invariant with respect to the thickness of the interface, it depends explicitly on
the height of the sample. It should be pointed out that the interface (macrocrack), once
formed, constitutes a physical plane of weakness within the intact material. Thus, its
orientation is assumed to be fixed upon the onset of localization. This does not preclude
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Fig. 3. Influence of the convective term in the expression for the velocity discontinuity on the
volumetric characteristics.

the possibility that for deformation histories experiencing large stress reversals additional
macrocracks may develop within the same representative volume.

The results of numerical analyses are presented in Figs 4 and 5. Figure 4 shows the
mechanical characteristics obtained for a sample of h = 0.1 m. The rate of strain softening
(Fig. 4a) is virtually insensitive to the confining pressure. This is a rather debatable issue;
it should be noted, however, that such a sensitivity, if indeed present, can easily be accounted
for by a simple modification of the degradation law (24) (e.g. assuming that the value of C
is affected by F 2). Overall, the qualitative aspects, including the nature ofvolumetric profiles,
appear to be consistent with the experimental data provided in Elfgren (1990). Finally, Fig.
5 presents the mechanical characteristics for two samples of h = 0.1 m and h = 0.2 m
subjected to the same loading history. As expected, the response in the post-localized regime
is quite sensitive to the geometry of the sample. In particular, the average rate of strain­
softening progressively increases with the height of the specimen. The deformation mode,
as observed macroscopically, is strongly anisotropic, i.e. the reduction in the vertical stress
is accompanied by significant distortions, which is evident from Fig. 5c.

IMPLEMENTATION IN FINITE ELEMENT ANALYSIS

The problem addressed in this section involves the analysis of progressive failure of
concrete blocks subjected to uniaxial compression under plane strain conditions. The
objective is to analyse the mode of failure as a function of the geometry of specimens. Three
blocks, 5 m in width and 5, 7.5 and 10 m high, respectively, have been considered. The
loading process consisted of applying uniform vertical displacements along the upper
surface under the condition of perfect bonding at the end platens. The specimens were
discretized using four-noded rectangular elements (100,150 and 200 elements, respectively)
with isoparametric formulation and 2 x 2 Gauss quadrature. The material parameters
selected for the analysis were identical to those used for numerical simulations discussed in
the previous section. The dimension fl, eqn (11), was estimated based on a partitioning
rule, after Pietruszczak and Niu (1993). In spite of the symmetry in boundary conditions,
the whole structure was discretized in order to verify the criterion for the selection of the
shear band orientation [as suggested in Pietruszczak and Niu (1993)]. The problem was
solved using the "tangential stiffness" approach (Owen and Hinton, 1980) and employing
a non-symmetric equation solver. Since the analysis incorporating the homogenization
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Fig. 4. Numerical simulations of unstable response for a series of plane strain uniaxial compression
tests.

procedure, eqn (13), shows little sensitivity to the mesh design, no explicit mesh convergence
study was performed.

The results of numerical simulations are shown in Figs 6 and 7. Figure 6 presents
the global load-displacement characteristics obtained for three different geometries. The
response of the short (5 x 5 m) block remains stable, whereas for the remaining geometries,
the ultimate load is reached, after which the global characteristics become unstable. For all
the cases considered, the initiation of brittle failure takes place below the ultimate load
intensity. The magnitude of the collapse load is certainly influenced by the mechanical
characteristics of the interface. It should be pointed out again that the response of both
constituent materials (i.e. the intact material and the interface) is assumed to be stable and
the instability arises due to the geometric effect of progressive degradation of asperities.

Figure 7 shows the deformed mesh shortly after the ultimate load has been reached.
In the 10 m high sample, the failure mechanism involves localization of deformation along
two conjugate directions. The deformation mode is symmetric due to the symmetry in
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Fig. 6, Load (P)-surface displacement (U) characteristics for concrete blocks subjected to uniaxial
compression,

boundary conditions and homogeneity of the material properties. In the short specimen
(5 x 5 m) the predominant mode is the lateral expansion (bulging), with upper and lower
parts of the specimen deforming quite uniformly.

FINAL REMARKS

A theoretical framework for the analysis of the mechanical response of plastic-frac­
turing materials, such as concrete, rocks, ceramic matrix composites, etc., has been
presented. It has been assumed that the brittle response, associated with formation of
discrete failure planes, is the result of the localization of damage. The onset of localized
modes has been considered as a bifurcation problem. The localization criterion has been
applied to determine the bifurcation point and the orientation of the failure plane for a
series of plane strain uniaxial compression tests performed at different initial confining
pressures.

The macroscopic response in the post-localized regime has been estimated based on a
homogenization technique. The average properties have been derived from the properties
of constituents and the respective volume fractions. A simple, micromechanically-based
formulation for the interface behaviour has been discussed, in which the unstable response
has been attributed to a progressive degradation of asperities. Numerical examples have
been provided, illustrating the influence ofconfining pressure, as well as that of the geometry
of the sample, on the average mechanical response. The results of these simulations are in
qualitative agreement with the existing experimental data. The assessment of the quan­
titative performance, however, requires a comprehensive experimental program involving
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the identification of properties of the intact as well as the interface material. Finally, the
framework has been implemented in a finite element algorithm to study the response of
concrete blocks subjected to uniaxial compression. The objective was to analyse the mode
of' dcf'orm,ttion as a function of the geometry of blocks. The results, which once again
should be \iewed in qualitative rather than quantitative terms, provide an insight into the
mechanism or progressive failure in relation to the load-carrying capacity of the blocks.
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